
cruzbit: A simple decentralized peer-
to-peer ledger
asdvxgxasjab

For those interested, I want to elaborate on some of the details in the
README found in the project s̓ Github repository. Specifically, I want to
highlight what makes cruzbit different from bitcoin (and other
cryptocurrencies) and why certain design decisions were made in a bit
more depth. I also want to discuss more of the philosophy behind cruzbit.
This document could maybe be described as a “whitepaper.”

Newer crypto

cruzbit uses the Ed25519 signature system. This isnʼt just for show or to be
hip. There are substantial problems with ECDSA (the most common
signature system currently used by cryptocurrencies) usage in practice.
People have even written tools showing how some of the weaknesses can
be exploited. The attacks are not theoretical. The upgraded signature
system also protects against some classes of what are known as side-
channel attacks. These may seem infeasible on the surface but they are
quite real threats. They are one of the reasons why exchanges use Faraday
tents and elaborate setups as part of their storage practices. The
signatures are also just plain fast.

For hashing/proof-of-work I chose SHA3/Keccak. This also wasnʼt because
the number is higher than SHA2 or for the simple sake of newness. In
general, in cryptosystems newness for the sake of newness isnʼt always the
best idea. If an algorithm is proven to hold up to scrutiny for many years it
makes sense to continue to use it and not drop it for something new and
shiny. But SHA3 is somewhat compelling. Its designers boast blazing fast
hardware speeds which consume less power. In my opinion, you want a

https://medium.com/@asdvxgxasjab
https://github.com/cruzbit/cruzbit/blob/master/README.md
https://github.com/cruzbit/cruzbit
https://ed25519.cr.yp.to/
https://crypto.stackexchange.com/questions/57846/recovering-private-key-from-secp256k1-signatures
https://github.com/tintinweb/ecdsa-private-key-recovery
https://twitter.com/matthew_d_green/status/1083135838894968832
https://en.wikipedia.org/wiki/Side-channel_attack
https://www.wired.com/story/coinbase-physical-vault-to-secure-a-virtual-currency/
https://en.wikipedia.org/wiki/SHA-3
https://keccak.team/2017/is_sha3_slow.html


strong proof-of-work function to provide as much security as possible with
the least thermodynamic cost. I see hardware mining as optimally efficient
and if this is the most optimally efficient strong cryptographic hash function
available, it makes sense, in my opinion, to use it. Iʼm not interested in
designing-out the possibility of miner centralization. Iʼll let free market
dynamics handle that problem.

Simplified transaction format

First Iʼll provide a quick overview of bitcoin transactions in order to make the
comparison more clear. At a high-level, a bitcoin transaction has two critical
sections. The first is a list of inputs and the second is a list of outputs. Some
people refer to the outputs themselves as the “coins” in bitcoin. Working
backwards, an output contains an amount and a piece of code (“script”)
required to be satisfied to redeem the amount specified in the output. The
vast majority of the time, this code is effectively asking for the user to
“provide the correct public key and signature to spend this output.” An
input is a reference to a previous output. It also includes the rest of the
code required to satisfy the output s̓ codified constraints, which is
effectively just that the correct public key and signature are presented. The
sum of the amounts of all of the outputs must be equal to or less than the
sum of the amounts of the inputs. Any difference is considered an implicit
miner fee. This means in addition to any scheduled subsidy, the miner of the
block which confirms the transaction also can claim this difference.

In my opinion, this structure is somewhat awkward in practice and is a
complexity that isnʼt entirely necessary. This puts a few requirements on a
wallet (software which manages keys and creates and signs transactions.) It
must know about all of the past transactions involved and how to properly
construct these somewhat esoteric pieces of code to redeem their outputs.
Already youʼve likely introduced the need for the developer to rely upon a
bitcoin-specific dependency, which is sometimes difficult for a programmer
to understand the fitness of. They just want to make a transaction. They



donʼt really care about output scripts or selecting inputs or any of these
details.

This also means transaction sizes and verification complexity are not
constant. Bitcoin code is littered with places that have to act on specific
sizes in bytes and calculate signature operations to properly vet
transactions for their validity. Not all transactions are equal in this respect
which is why transaction fee calculation is transaction-context-specific.
This is another fun detail a wallet developer needs to consider. As you can
see, you are quickly requiring that a wallet developer be a near-expert in
bitcoin protocol details. Being a good UI/UX designer and a skilled bitcoin
protocol engineer is a large ask.

So back to cruzbit, to address the aforementioned complexities and
awkwardness I got rid of inputs and outputs and those pieces of
code/script. In a cruzbit transaction, there is a well-understood concept of a
sender and a recipient. Both are basic Ed25519 public keys. Instead of
code/script, there is just a simple signature. I saw little justification for the
complexity of the script when most of the time people/entities transacting
just want to move value from one key to another. If you have a good and
easy to find SHA3 and Ed25519 implementation for your development
environment (as the Go language has built-in here and here) you donʼt need
any other external dependencies to craft a validly signed cruzbit
transaction. You donʼt need any transaction history. You do need to know
what the current height is of the cruzbit block chain (which number block is
the most recent) but that and the balance of your public key(s) is the only
context you really need to know.

In addition to these changes I also made the fee explicit. And in cruzbit a
miner must claim all fees. It makes it nice for verification/sanity checking if
all of the non-zero public key balances at a given block height match the
scheduled issuance at the time of that block height.

There are other small changes to the transaction format mentioned in the

https://godoc.org/golang.org/x/crypto/sha3
https://godoc.org/golang.org/x/crypto/ed25519


README but the above are the basics and most substantial. Iʼll discuss the
most obscure field (but trivially easy to calculate), “series”, in the next
section.

No UTXO set

What is a UTXO set? In bitcoin, it s̓ the set of all of the Unspent TranXaction
Outputs. In cruzbit, there are no transaction outputs. There are only public
key balances. In the previous section I discussed why I think that is more
simple and safer for wallet developers to deal with. But I also think it is more
conceptually simple for all users to grasp. Weʼre used to having an account
and for it to receive credits, and unfortunately debits. In cruzbit you can
think of each public key as a mini-account.

Cruzbit is not the first cryptocurrency-style ledger to abandon the UTXO-
model for the account-model, however, as far as Iʼm aware, all of those
which have moved to the account-model have done so in roughly the same
way. They have introduced an abstract notion of an account. Further, this
account s̓ transactions must all include a nonce. But this nonce isnʼt
pseudo-random. It is a serial nonce which must increase by 1 for each
transaction the account generates. The wallet must remember this nonce
(or retrieve it from a network node) and use care to craft transactions in the
correct order. Any break in the sequence disrupts the processing ability of
subsequent transactions. All nodes in the network must also remember the
most recent nonce used by all accounts.

That sounds a little complicated. Why does this per-account serial nonce
exist? While inputs and outputs are a bit unwieldy, in my opinion, that model
has some nice properties. The developer of bitcoin wasnʼt being weird for
weirdnessʼ sake. It was a calculated decision. With inputs and outputs you
donʼt have a problem of transaction replayability. In short, replaying a
transaction means resubmitting an already processed transaction to the
network in order to redeem the funds twice. By chaining transactions, the

https://github.com/cruzbit/cruzbit/blob/master/README.md
https://en.wikipedia.org/wiki/Cryptographic_nonce


input and output model has this protection built-in. No two valid
transactions will ever look identical. Whereas public key P paying public key
K 2 cruzbits could very well look the same as another transaction in the
future which involves the same keys for the same amount. There needs to
be a way to differentiate them, hence a nonce. Now that answers the
question of why does an inputless/outputless transaction need a nonce but
why does it need to be serial and per-account? If it werenʼt serial, network
nodes would have to keep track of every nonce ever used by each account
and make sure any new transactions donʼt contain re-used nonces. That
requires much more storage than a simple serial per-account nonce. The
savings should be clear.

But then why doesnʼt cruzbit require a serial per-account nonce? Cruzbit
differentiates transactions by including a traditional pseudo-random nonce.
If nonces arenʼt re-used per-sender no two transactions should look the
same. But cruzbit doesnʼt track these nonces. It only tracks which
transactions have been processed by their hash. It avoids having to
remember the hash of every historical transaction by introducing a network-
wide “series.” The series is effectively a serial nonce that the whole network
uses for a period of time. That period is 1008 blocks (roughly 1 week.) The
calculation for the correct series to use at a given height is:current block
chain height/1008 + 1

Transactions have a grace period. At any given block height the current and
previous series are acceptable when submitting a transaction. This exists to
mitigate potential issues arising from transaction queuing delay and other
potential effects of the time frame being too rigid. Humans arenʼt very good
with strict deadlines. But this all means cruzbit network nodes can “forget”
about transactions older than the previous series for the purpose of
processing new transactions. It s̓ a trade-off. I think it s̓ a conceptually
simple one which places much less burden on users but perhaps it s̓
debatable. The cost is network nodes have to always store the last two
seriesʼ worth of transaction hashes vs. having to store every account s̓ most



recent nonce. I think in practical terms the storage costs are probably
effectively equal but this can also be debated.

The other nice property of the UTXO model is that in order to verify new
transactions, network nodes only need to know about the set of unspent
transaction outputs. In cruzbit, nodes need to remember the balances of all
public keys with a non-zero balance. The storage requirements of these two
sets are probably roughly equal in practice. But in cruzbit, nodes also need
to store the hashes of the last two seriesʼ worth of transactions. This is a
marginally larger storage requirement for the benefits of not having to deal
with inputs and outputs and their aforementioned associated complexities. I
think it is a clear win but it is likely debatable.

No fixed block size limit

Due to inputless/outputless transactions being roughly the same constant
size, it isnʼt necessary to restrict blocks by size. We do it by transaction
count. But this restriction isnʼt fixed. It moves with “piecewise-linear-
between-doublings growth.” You can read more about it in BIP 101. That s̓
basically what cruzbit has adopted with some slight deviations. In my
opinion, it s̓ unreasonable to restrict block sizes to a single size forever. It
doesnʼt make rational sense. Computing and storage capabilities grow as
does healthy network usage. Debating the growth factor of blocks in a
block chain network is a painful experience and I think it is much easier if it s̓
baked in to the protocol from the beginning. In that sense everyone knows
what they are getting into upfront. No tricks nor surprises. With BIP 101 we
know the maximum capacity of the network at any future block height and
can plan for it accordingly. It is also a very simple solution. Miners can
restrict the sizes of blocks they choose to create and build off of. I donʼt
think they also need control over the maximum acceptable size for the
entire network so I am against explicit miner controls for this and I am also
against complexity arising from more dynamic models. Both of these
alternative approaches also negatively impact long-term predictability. I

https://github.com/bitcoin/bips/blob/master/bip-0101.mediawiki


guess weʼll see how it works out in practice.

Reference implementation is in Go

In my opinion, Go is a much easier language to read and work with than
C++. It is also very popular right now and has a lot of new developer
interest. In some ways, I think C++ is a bit esoteric, which is an accusation I
also level on the bitcoin protocol. I considered using Rust but Iʼm concerned
about the learning curve for new developers. I want the reference
implementation to be as understandable as possible for the largest number
of developers. But do be on the look-out for a future Rust port of the cruzbit
client.

Web-friendly peer protocol

All peer communication is with secure WebSockets. By secure here, I mean
that the channel is encrypted with TLS and the wss:// protocol scheme is
used. In the current default configuration there is no protection against
man-in-the-middle attacks because the certificates and keys used are
ephemeral and not signed by any publicly acknowledged certificate
authority. I chose WebSockets because I wanted to use something standard
and bi-directional. Again, I didnʼt want a user to have to use an obscure
library nor understand low-level TCP socket programming subtleties. I think
all modern development environments have a WebSocket implementation at
their disposal so that made it a natural choice. While building cruzbit, I often
used Chrome s̓ Javascript console to connect to the client and debug the
protocol.

The actual protocol and all primitives are structured in JSON. This is
probably a controversial choice. But again, I didnʼt want to require obscure
encoding schemes or constructions not readily available to all development
environments. And maybe most importantly, I wanted humans to be able to
work with it easily. Block header hashes and transaction hashes are

https://golang.org/
https://www.rust-lang.org/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://www.tomsguide.com/us/man-in-the-middle-attack,news-17755.html
https://www.json.org/


computed using their strictly-serialized JSON forms. This means no white-
space and strict ordering of fields. I say this choice is controversial because
JSON encoders/decoders are notorious for having finicky compatibility
issues across environments. Iʼm hoping our formats are rigid enough that
this isnʼt a material concern in practice.

So how is it like bitcoin?

The consensus rules around block processing are otherwise unchanged.
There is a target value of which the block header s̓ hash must be less than
when compared as 256-bit integers. Every 2 weeks (2016 blocks) there is a
re-target of this value designed for new block creation to converge on an
average 10 minute interval depending on network hash-power. The new
target is calculated the same way bitcoin s̓ is (except modified to include
protection against the ”Time Warp Attack”). The most-work chain wins and
each block must build off of a valid predecessor in the chain. The subsidy
schedule is also identical, every 4 years (210000 blocks) the block reward
halves. And no more than 21 million cruz will ever exist. One other odd
shared quirk is that new mining rewards are subject to a 100 block
maturation before theyʼre applied to a miner key s̓ balance. It is for the same
reason, which is to avoid an unpleasant UX in the event of an honest block
chain reorganization.

Philosophy

I designed cruzbit to function as a store of value and a transaction base
layer. I think it makes sense for any base layer to be as simple and basic as
possible. This is what I have tried to achieve. I have no political nor
ideological motivations and I am only interested in trying to provide such a
base layer. I believe bitcoin currently is this base layer but I believe it has its
quirks and short-comings which I hope Iʼm addressing. It s̓ possible Iʼm not
and this attempt is misguided but I think there is only one way to find out. Iʼll
let the market decide.

https://bitcointalk.org/index.php?topic=43692.msg521772#msg521772



